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Introduction
Glioblastoma are the most common primary tumor arising 
within the central nervous system (CNS) and the prognosis 
is poor, in particular with high grade tumors such as glio-
blastoma multiforme [1].  Despite modern treatments with 
neurosurgical resection, radiotherapy and chemotherapy, the 
median life expectancy for patients with malignant gliomas is 
approximately 12 months with less than 5% of patients alive at 
5 years after diagnosis[2, 3].  

Differentiation-inducing therapy, which modifies cancer cell 
differentiation and is the most successful treatment for acute 
promyelocytic leukemia[4], has been proposed to be a novel 
potential approach to treat malignant tumors[5].  The biotoxin 
cholera toxin is reported to be capable of inducing differentia-
tion of rat C6 malignant glioma cells[6].  However, little has 
been known about its possible role in human glioma cell lines.  
And importantly, the key factors governing glioblastoma dif-

ferentiation, and therefore tumor malignancy, are still largely 
unknown.  

The cytoplasmic serine/threonine protein kinase glycogen 
synthase kinase-3 (GSK-3) was first described as a component 
of the metabolic pathway for glycogen synthase regulation[7].  
There are two homologous mammalian isoforms encoded by 
different genes, GSK-3α and GSK-3β[8].  It has been implicated 
in fundamental processes including cell fate determination, 
metabolism, transcriptional control[9].  More recent studies 
indicate a role for GSK-3β in the control of neoplastic transfor-
mation and tumor development, suggesting that GSK-3β is a 
potential therapeutic target in human cancers[7, 10–12].  However, 
the vast majority of research has been focused on the aspects of 
proliferation and apoptosis, and little is known about its pos-
sible role involved in the process of cancer cell differentiation.

Here we report that the traditional biotoxin cholera toxin is 
capable of inducing differentiation in U87-MG human glio-
blastoma cell line and further determine the underlying mech-
anism.  Utilizing molecular biological approaches, we showed 
that GSK-3β had a hitherto unrecognized pathologic role in 
cellular differentiation in human malignant glioblastoma.  
These findings may open new avenues for identifying novel 
therapeutic targets in the differentiation therapy of cancers.  
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Materials and methods 
Cell culture and drug treatment
U87-MG cells were obtained from the American Type Culture 
Collection (Manassas, VA) and maintained in Dulbecco’s 
modified Eagle’s medium (DMEM, Invitrogen, Grand Island, 
NY) supplemented with 10% FBS (Invitrogen) in a humidi-
fied atmosphere of 5% CO2 at 37 ºC.  Cell differentiation was 
induced with cholera toxin (Sigma, St Louis, MO) in DMEM 
containing 10% FBS.  Control was treated with an equivalent 
volume of DMEM.  

Morphological evaluation
 The morphologies of living cells were studied using an Olym-
pus (Melville, NY) IX71 inverted microscope along with an 
Olympus DP Controller software.  

Proliferation assay
For cell proliferation assay, a 5-bromo-2-deoxyuridine (BrdU) 
labeling and detection kit (Roche Diagnostics, Mannhei, Ger-
many) was used according to the manufacturer’s instructions.  
Cells seeded in 96-well plates at 2×103 cells/well with tripli-
cate wells for each condition were labeled with BrdU for 4 h, 
then anti-BrdU-POD Fab fragments and substrate were added 
in sequence.  The OD was determined at 405 nm using an 
EXL800 microimmunoanalyzer (Bio-Tek Instruments, Burling-
ton, VT).  The results were obtained from three independent 
experiments.  

Western blot analysis
After lysis of cells and measurement of protein concentration, 
the cells were dissolved in SDS sample buffer [62.5 mmol/L 
Tris-HCl, pH 6.8, 2% SDS, 10% glycerol, 50 mmol/L DTT, and 
0.1% bromophenol blue].  Equal amount of proteins were ana-
lyzed by SDS-PAGE on 12% poly-acrylamide gels.  Proteins 
were electroblotted on a nitrocellulose membrane.  Mem-
branes were incubated in 5% nonfat dry milk in TBST (Tris-
buffered saline, 0.05% Tween-20) and then overnight at 4 ºC 
with antibodies against GFAP, p-GSK-3βSer9, GSK-3β (1:1000, 
Cell Signaling Technology, Beverly, MA), p-GSK-3βY216 (1:500, 
Santa Cruz Biotechnology, Santa Cruz, CA), PCNA (1:10000, 
Cell Signaling Technology) and GAPDH (1:2000, Cell Sig-
naling Technology), respectively.  After incubation with 
horseradish peroxidase-labelled secondary antibody (1:1000, 
Cell Signaling Technology), visualization was achieved with 
enhanced chemiluminescence (Pierce, Rockford, USA) using a 
GeneGnome chemiluminescence imaging and analysis system 
(Syngene Bio Imaging, Cambridge, UK).  

RNA silencing of GSK-3β
Human GSK-3β siRNA and negative siRNA (control) were 
purchased from Invitrogen.  U87-MG cells with 30%−50% 
confluence were transfected via Lipofectamine 2000 (Invitro-
gen) following the manufacturer’s protocol.  GSK-3β protein 
expression was assessed by immunoblot analysis 48 h after 
transfection.  At 36 h posttransfection, cells were incubated 
with cholera toxin for additional 48 h for further analysis.

Transient transfection
pcDNA3-GSK-3β S9A mutant is a kind gift of Prof Z MAO, 
Emory University.  Asynchronously growing cells were plated 
in 6-well dishes 24 h before transfection.  Transient transfec-
tions were performed with 4 µg plasmid DNA per well using 
12 µL FuGENE HD transfection reagent (Roche Diagnostics 
Corp).  Cells were replaced with fresh medium 12 h after the 
transfection.  To monitor transfection efficiency, the constructs 
were co-transfected with pEGFP vector and fluorescent cells 
were counted 48 h posttransfection.  Such analyses indicated 
that 60%–70% of the cell population expressed the foreign pro-
tein (data not shown).

Immunofluorescent staining 
Cells were fixed with 4% paraformaldehyde for 30 min, 
washed with PBS and then penetrated with PBS containing 
0.2% Triton X-100 for 30 min and blocked with 5% bovine 
serum albumin for 1 h.  The blocking buffer was removed 
and cells were incubated with antibody against GFAP (1:200, 
Cell Signaling Technology) overnight at 4 ºC.  Cells were then 
washed and incubated with cy3 conjugated goat anti-mouse 
IgG (1:400, Jackson ImmunoResearch Laboratories, West 
Grove, PA) for 1 h at room temperature.  DNA was stained 
with Hoechst 33258 (5 µg/mL, Sigma) for 5 min at room tem-
perature.  Images were observed by a fluorescence microscope 
(Olympus).  

Statistical analysis
Data are presented as mean±standard deviation (SD) of three 
separate experiments.  Statistical significance was determined 
by Student’s t-test.  A result with a P-value of less than 0.05 is 
considered statistically significant.

Results
Cholera toxin induces differentiation of U87-MG glioblastoma 
cells
Microscopic observation of U87-MG glioblastoma cells treated 
with cholera toxin in our study revealed that the shape of 
cholera toxin-treated cells was similar to that of mature astro-
cytes, being smaller cell bodies and much longer, fine, tapering 
processes.  In contrast, most cells in the control were flattened 
and spindle-shaped and had no thin process (Figure 1A).  We 
further examined whether morphologic changes were accom-
panied by expression of glial fibrillary acidic protein (GFAP), 
a well-established marker of mature astrocytes[13].  Indeed, 
Western-blotting analysis confirmed significant up-regulation 
of GFAP protein expression in cholera toxin treated cells com-
pared to controls in a dose-dependent manner (Figure 1B).  At 
the same time, the level of proliferating cell nuclear antigen 
(PCNA), a well-accepted marker of proliferation that facilitates 
fast processing of DNA[14] was markedly reduced (Figure 1B).  
Furthermore, BrdU incorporation analysis showed that chol-
era toxin led to a time-dependent decrease in proliferation of 
the U87-MG cells (Figure 1C).  This indicates that cholera toxin 
induces differentiation of glioblastoma cells into the matura-
tion process of astrocytic lineage and provides a reliable model 
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of differentiation.

Activation of GSK-3β in the induced-differentiation of glioblastoma 
cells 
We also found activation of GSK-3β during the course of chol-
era toxin-induced differentiation.  p-GSK-3βY216 which repre-
sents the active kinase form of GSK-3β was detected by west-
ern blot analysis to assess the activation state of the protein.  
Figure 2A revealed significant up-regulated GSK-3βY216 protein 
level in U87-MG cells after incubation with cholera toxin for 9 
h, which was maintained at a high level.  GSK-3β phosphory-
lation at the Ser-9 residue, which represents the inactive form 
of GSK-3β kinase, was also determined.  As shown in Figure 
2B, 12 h after cholera toxin stimulation in U87-MG cells, there 
is a decrease in the intensity of the phosphorylated form 
of GSK-3β, while total GSK-3β remains stable throughout.  
Together, these data suggest the activation of GSK-3β during 
the differentiation process of glioblastoma cells.  

GSK-3β gene knockdown abrogates differentiation ability of U87-
MG glioblastoma cells
To further confirm the role of GSK-3β in U87-MG glioblastoma 
cell differentiation, we examined the effects of GSK-3β siRNA 
on cholera toxin induced-differentiation of U87-MG cell.  To 
selectively down-regulate expression of GSK-3β protein, we 
first evaluated the effect of GSK-3β gene silencing mediated by 

siRNA.  As shown in Figure 3A, compared with those trans-
fected with negative siRNA, cells transfected with GSK-3β 
siRNA resulted in the most dramatically knockdown of the 
protein levels.  In addition, morphological transformation and 
elevation of GFAP during U87-MG cell differentiation were 

Figure 1.  Cholera toxin induces differentiation of U87-MG glioblastoma 
cells.  (A) Morphological transformation induced by 10 ng/mL cholera 
toxin (CT) for 48 h (original magnification, ×320).  (B) Effect of CT on 
GFAP and PCNA expression.  Cells were treated with 10 ng/mL CT for 
48 h.  (C) Proliferating cells determined by measuring the amount of BrdU 
incorporation in cells.  Cells were treated with 10 ng/mL CT for the time 
indicated.  Results are means±SD.  n=3.  bP<0.05, cP<0.01 compared 
with the controls.

Figure 2.  GSK-3β is activated by cholera toxin in U87-MG cells.  Immuno
blot of p-GSK-3βY216 (A) and p-GSK-3βSer9 (B) levels in U87-MG cells treated 
with 10 ng/mL cholera toxin (CT) for the time indicated.

Figure 3.  Silencing GSK-3β blocks differentiation of U87-MG cells.  (A) 
Immunoblot of the GSK-3β protein levels after transfection with negative 
control (Neg) or 10 nmol/L siGSK-3β for 36 h.  (B−C) Morphology (original 
magnification, ×320) (B) and immunoblot of the GFAP levels (C) in GSK-3β 
knockdown cells subsequently stimulated with CT for 48 h.
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blocked by GSK-3β specific siRNA (Figure 3B and 3C).  These 
results indicate the requisite role of GSK-3β in the differentia-
tion of glioblastoma cells and suggest that GSK-3β positively 
regulates the differentiation.

Overexpression of active GSK-3β leads to differentiation of U87-
MG glioblastoma cells
We next examined whether forced expression of GSK-3β is 
sufficient to induce differentiation in U87-MG cells.  Cells 
were transfected with a constitutively active pcDNA3-GSK-3β 
S9A mutant (GSK-3β S9A) in which the N-terminal serine-9 
residue was substituted with an alanine residue and there-
fore cannot underwent inhibitory phosphorylation.  Western-
blotting analysis confirmed marked enhancement of GSK-3β 
protein level in GSK-3β S9A gene transferred cells compared 
to those in the empty vector controls (Figure 4A).  As seen in 
Figure 4B, transfection of GSK-3β S9A initiates morphological 
transformation from polygon appearance in the empty vec-
tor (pcDNA3) group to smaller cell bodies with much longer, 
fine, tapering processes, similar to that of mature astrocytes.  
Immunohistochemical analysis further confirmed significant 
up-regulation of GFAP protein expression in GSK-3β S9A 
gene transferred cells compared to those in the pcDNA3 
controls (Figure 4C).  That is, U87-MG cells transfected with 
GSK-3β S9A exhibited hallmarks of differentiation.  These data 
indicate that overexpression of active GSK-3β is necessary and 
sufficient to promote differentiation in U87-MG human glio-
blastoma cells.

Discussion
The present study was undertaken to clarify the exact role 
of cholera toxin and GSK-3β in cancer differentiation.  Our 
results demonstrate that the traditional biotoxin cholera toxin 
is able to induce differentiation of human glioblastoma cells.  
GSK-3β suppression via siRNA-triggered gene silencing inhib-
its cholera toxin-induced differentiation.  Conversely, over-
expression of GSK-3β enables glioblastoma cells to acquire 
differentiation ability.  These data lead to the identification of 
GSK-3β as a positive regulator of astrocytic differentiation in 
human malignant glioblastoma cells.  

Deviation from the tissue/lineage-specific differentiation 
program is one of the fundamental aspects of tumorigenesis[15].  
The aberrantly differentiated cells show abnormal growth 
characteristics and distinct invasive and metastic proper-
ties[16].  Upon appropriate stimulus, malignant cells results 
in reprogramming, loss in proliferative capacity as well as 
induction of differentiation[5, 16].  Cholera toxin and elevated 
cAMP appeared to differentiate rat C6 glioma cells to express 
astrocytic phenotype[6, 17].  Here we showed that exposure of 
U87-MG malignant gliolastoma cells to cholera toxin could 
also resulted in their morphological changes to astrocytic phe-
notype, increase in astrocytic differentiation marker protein 
GFAP and decrease in proliferation.  This might serve as a 
faithful model to study molecular mechanisms underlying dif-
ferentiation defects in human cancer cell lines.  

GSK-3β is a multifunctional serine/threonine kinase that 

regulates various cellular pathways, depending on its sub-
strates for phosphorylation[9, 18].  Since oncogenic transcription 
factors (eg, c-Jun, c-Myc) and proto-oncoproteins (ie, β-catenin, 
Gli proteins) are putative GSK-3β substrates for phosphoryla-
tion-dependent inactivation[19], it is hypothesized that GSK-3β 
interferes with cellular neoplastic transformation and tumor 
development, as exemplified by its activity in Wnt/β-catenin 
signaling[20].  However, only a few studies have addressed its 
role(s) in human cancer, and these studies have reported dif-
fering effects of GSK-3β on cancer cells[21, 22].  Using GSK-3β 
deficient mouse embryonic fibroblasts, it was shown that 
GSK-3β plays a crucial role in cell survival mediated by the 
nuclear factor-κB (NF-κB) pathway[23, 24].  Thus, these observa-
tions bring forward apparently opposing notions regarding 
the functions of GSK-3β in neoplastic cells on the one hand, 
removing a neoplastic trigger by phosphorylation-dependent 
degradation of β-catenin oncoprotein, and on the other, con-
tributing to a cell proliferation and survival pathways by regu-
lating NF-κB.

In all, our study demonstrates a novel pathologic role of 

Figure 4.  Overexpression of active GSK-3β promotes differentiation of 
U87-MG glioblastoma cells.  Cells transfected with GSK-3β S9A mutants 
(S9A) or empty vector (pcDNA3) for 48 h followed by Western-blotting for 
GSK-3β (A), morphological evaluation (original magnification, ×320) (B) or 
immunohistochemistry for GFAP expression (C).
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GSK-3β in human malignant glioblastoma, both by genetically 
modulating the activity and expression of this kinase and by 
substantiating its activity in established glioblastoma cells.  We 
demonstrate that GSK-3β initiates U87-MG glioblastoma cells 
susceptible to differentiation and that loss of GSK-3β activity 
was necessary for the blockage of astrocytic differentiation 
of malignant glioblastoma cells.  Our data provide strong 
evidence that GSK-3β contributes to cellular differentiation.  
GSK-3β may be a novel therapeutic target and a regulator of 
cellular differentiation in malignant tumors.  

Furthermore, investigating broader mechanisms underlying 
the potential pro-differentiation role of GSK-3β may provide 
insights into molecular pathways leading to glioblastoma tum-
origenesis, and support development of novel strategies for 
treatment targeting this kinase and the molecular epidemiol-
ogy of glioblastoma.  

One thing we would mention here is that the morphology 
of GSK-3β S9A mutant transfected cells was not as obvious 
as that of cholera toxin treated cells.  This may be attributed 
to the multiple-targets of cholera toxin besides GSK-3β.  We 
have previously reported that PKA/CREB pathway mediated 
the differentiation-inducing activity of cholera toxin in rat C6 
and primary human malignant glioma cells[6].  Recent reports 
provide evidence that cholera toxin inhibits dendritic cell dif-
ferentiation by cAMP-mediated inhibition of IRF8 function[25].  
It was also documented that ganglioside GM1 reaction with 
B subunit of cholera toxin induces neuron-like differentiation 
of PC12 and neuroblastoma cells[26, 27].  Therefore, it seems 
reasonable to postulate that GSK-3β might not be the unique 
molecular targets of cholera toxin that might contribute to the 
differentiation of human glioblastoma cells.  And thus it was 
not surprising that GSK-3β overexpression-initiated morpho-
logical alteration was not as obvious as that induced by chol-
era toxin.  However, further studies are warranted to conclu-
sively clarify this important issue.
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